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[1] In hydrologic studies, especially those using dynamic unsaturated zone moisture
modeling, calculations based on property transfer models informed by hydraulic property
databases are often used in lieu of measured data from the site of interest. Reliance on
database-informed predicted values has become increasingly commonwith the use of neural
networks. High-quality data are needed for databases used in this way and for theoretical and
property transfer model development and testing. Hydraulic properties predicted on the
basis of existing databases may be adequate in some applications but not others. An obvious
problem occurs when the available database has few or no data for samples that are closely
related to the medium of interest. The data set presented in this paper includes saturated
and unsaturated hydraulic conductivity, water retention, particle-size distributions, and bulk
properties. All samples are minimally disturbed, all measurements were performed using the
same state of the art techniques and the environments represented are diverse.
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1. Introduction

[2] Unsaturated zone hydraulic property data are impor-
tant in studies related to aquifer recharge, vadose zone flow
and contaminant transport, subsurface moisture dynamics
and habitat quality, infiltration and rainfall-runoff relations,
slope stability, effects of climate variability and change on
ecosystems, surface water and groundwater interactions.
They are also essential in the development of new theoretical
and property transfer models (PTMs), and testing of existing
models. PTMs, which can be based on simple or complex
relationships among variables of interest, serve the purpose
of estimating hydraulic properties frommore easily measured
bulk properties such as particle size distribution and bulk
density. Published databases of hydraulic properties, such as
those ofHoltan et al. [1968],Mualem [1976], A. Nemes et al.
(UNSODA model version 2.0, data set, 1999, available at
http://www.ars.usda.gov/Services/docs.htm?docid=8967),
andWösten et al. [1999], are often used in these studies when
direct measurements are not possible or when data for a large
number of samples are required. Some PTM development
and testing studies use these published databases [Vereecken
et al., 1989, 1990; Schaap et al., 1998; Hwang and Powers,
2003], while others use unpublished data or data presented
only in parameterized or graphical form [Gupta and Larson,
1979; Arya and Paris, 1981; Wagner et al., 2001]. Schaap
and Leij [1998] evaluated the effect of data accuracy on the
uncertainty of PTMs and concluded that the performance of a
PTM depends strongly on the data being used for calibration
and testing.
[3] Desirable features of a database include (1) high

reliability and precision of measurements; (2) high-quality,

minimally disturbed samples; (3) a large and diverse sample
population; (4) consistency in measurement techniques
across the data set; (5) a full suite of hydraulic and bulk
property data for each sample; and (6) ease of use. In the
auxiliary material of this paper we present a data set that,
though smaller in sample number than many published
databases, is ideal in several ways.1 Sample collection and
preparation techniques were selected to ensure minimal
sample disturbance, measurements were preformed by the
same laboratory techniques under highly controlled condi-
tions, and measurements were done by a limited number of
researchers in the USGS Unsaturated Zone Flow Laboratory
in Menlo Park, California. Samples are from diverse geo-
graphic, climatic, and geomorphic environments, and the
data were originally generated for various research purposes
including recharge estimation, simulation of variably satu-
rated flow and contaminant transport, theoretical studies of
porous media, and PTM development. Samples were from
various depths, including many from below the root zone.
Published data commonly include samples from shallow
depths; about 80% of the samples in the data set of Nemes
et al. (data set, 1999) come from depths less than 1 m. The
data presented here include bulk density (rb), particle density
(rp), particle-size distribution, saturated hydraulic conduc-
tivity (Ksat), hydraulic conductivity as a function of water
content (K(q)), and water content as a function of matric
potential (q(y)).

2. Site Descriptions

[4] The study areas represented by this data set, with a total
of 137 individual samples, are located in the United States
including the states of California, Colorado, Idaho, Indiana,

1Auxiliary materials are available in the HTML. doi:10.1029/
2008WR007497.

1U.S. Geological Survey, Menlo Park, California, USA.
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Maryland,Massachusetts,Montana, Nebraska, Nevada, New
Jersey, New Mexico, Texas, Utah, Washington, Wisconsin,
and Wyoming. The samples, which vary in depth from 0.4 to
59.9 m (Figure 1), are all minimally disturbed and encompass
a wide range of environments in terms of geology, climate,
and land use. Table 1 provides summary information on the
individual study areas and the number of samples from each
area. The auxiliary material provides additional detailed
information for each site, including specific locations and
depths for each sample, sampling methods used, and general
information on climatic and geologic environments.

3. Methods

[5] The steady state centrifuge (SSC) method used to
measure K(q) on 133 of the 137 minimally disturbed core
samples from within the various study areas is the Unsatu-
rated Flow Apparatus (Use of brand names does not consti-

tute endorsement by the U.S. Geological Survey) (UFA)
version [Conca and Wright, 1998; Nimmo et al., 2002] of
the method originally developed by Nimmo et al. [1987].
The method of Nimmo et al. [1987] was used on 4 of the
137 samples. Most core samples, with the exception of
the Middle Rio Grande Basin samples, were subcored in
the laboratory using amechanical coring device into a 4.9-cm
long, 3.3-cm diameter retainer designed specifically to fit into
the buckets of the UFA centrifugal rotor. The Middle Rio
Grande Basin samples were smaller in diameter than the UFA
retainers, therefore retainer-lining sleeves were required for a
proper sample fit.
[6] The SSC method requires that steady state conditions

be established within a sample under centrifugal force.
Steady state conditions require application of a constant flow
rate and a constant centrifugal force for sufficient time that
both the water distribution and the water flux within the
sample become constant. When these conditions are satis-
fied, Darcy’s law relatesK to q andmatric pressure (y) for the
established conditions as follows:

q ¼ �K qð Þ dy
dr

� Crw2r

� �
; ð1Þ

where q is the flux density (cm/s), C is a unit conversion
factor of 1-cm water/980.7 dyne/cm2, r is the density of the
applied fluid (g/cm3),w is the angular velocity (rad/s), and r is
the radius of centrifugal rotation (cm). If the driving force is
applied with the centrifuge rotation speed large enough to
ensure that dy/dr� rw2r, i.e., matric-pressure gradients that
develop in the sample during centrifugation are insignificant,
the flow is essentially driven by centrifugal force alone. The
flow equation then simplifies to

q � K qð ÞCrw2r: ð2Þ

The w threshold for which the dy/dr gradient can become
negligible depends on the hydraulic properties of the medium
of interest. Nimmo et al. [1987] presented model calculations
showing that the dy/dr gradient becomes negligible at rela-
tively low speeds for a sandymedium and at higher speeds for
a fine-textured medium. This technique normally results in
fairly uniform water content throughout the sample,
permitting the association of the sample-average q and y
values with the measured K.
[7] After achieving steady flow at a given q, q was mea-

sured by weight and y was measured by nonintrusive
tensiometer [Young and Sisson, 2002] or the filter paper
method [Fawcett and Collis-George, 1967] in cases where
suctions exceeded 800-cm water. Additional dry end q(y)
points were measured on 17 samples using a chilled mirror
hygrometer [Nimmo and Winfield, 2002] for suctions between
105 and 107 cm. These measurements along with the
computation of K, yielded a triplet of data (K, q, y) for
the average water content within the sample. Repeat meas-
urements with different q and in some cases different
rotational speed gave additional points needed to define
the K(q), and q(y) characteristics. There are five samples for
which q(y) was not measured. Three of the samples had
gravel at the top surface which prohibited sufficient contact
with the tensiometer and the other two simply lack that
measurement.

Figure 1. (a) Depth distribution of 137 core samples with
(b) detailed depth information for samples from 1 to 10 m.
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[8] Ksat was measured using either the standard benchtop
falling head method [Reynolds et al., 2002] or the falling
head centrifuge method [Nimmo et al., 2002] in cases where
samples had very low (less than about 10�6 cm/s)Ksat values.
The increased driving force allows for rapid measurement at
low Ksat values using the equation from Nimmo et al. [2002]

Ksat ¼
2aL

Arg tf � ti
� � ln

gzf þ w2r2b
� �
gzi þ w2r2b
� �

" #
; ð3Þ

where a is the cross-sectional area of the inflow reservoir
(cm2), L is the sample length (cm), A is the cross-sectional
area of the sample (cm2), t is time (s, initial and final), z is the
height of water above the plane in which the sample rotates
(cm), and rb is the position of the bottom of the sample (cm).
[9] Data also include rb, rp, and particle-size distributions.

Measurements of rp were performed with the pycnometer
method [Flint and Flint, 2002] on all core samples. Porosity
was calculated using the relation F = 1 � (rb/rp) using
measured rb and rp values. A Coulter LS-230 (Use of brand
names does not constitute endorsement by the U.S. Geolog-
ical Survey) particle-size analyzer was used to characterize
particle-size distributions by optical diffraction [Gee and Or,
2002]. The range of measurement for this device is from 4 �
10�5 to 2mm, divided into 116 size bins. Any particles above
2 mmwere sieved out with American Society for Testing and
Materials (ASTM) sieves (sizes 2, 2.8, 4, 5.6, 8, 11.2, 16,
22.4, and 32.5 mm) and later integrated into the size distri-
bution results. The fraction finer than 2 mm was carefully
disaggregated using a mortar and rubber-tipped pestle and
then split with a 16-compartment spinning riffler to obtain
appropriate representative samples for analysis.
[10] In order to perform correlation analyses, the Rossi-

Nimmo junction (RNJ) model [Rossi and Nimmo, 1994] was
used to parameterize all of the y(q) data measured in the
laboratory. The RNJ model consists of three functions joined
at two points (defined as y i and y j). These functions are a
parabolic function for the wet range of y (y i 	 y 	 0), a
power law function [Brooks and Corey, 1964] for the middle
range of y (y j 	 y 	 y i), and a logarithmic function for the
dry range of y (yd 	 y 	 y j). The model has the following

two independent parameters: (1) the scaling factor (yo)
and (2) the curve-shape parameter (l). Unlike the model of
Brooks and Corey, which holds q fixed between y = 0 and
the air entry pressure, the RNJ model produces a smooth
curve near saturation. The curve-shape parameter l indi-
cates the relative steepness of the middle part of the q(y)
curve, described by a power law function. Larger l values
cause the drainage part of the q(y) curve to change with
greater sensitivity to y . Morel-Seytoux and Nimmo [1999]
describe an algorithm for conversion of RNJ model param-
eters to Brooks and Corey [1964] or van Genuchten [1980]
parameters.
[11] In the RNJ model [Rossi and Nimmo, 1994], the

parabolic function for y i 	 y 	 0 is

q
qsat

¼ 1� c
y
yo

� �2

; ð4Þ

where c is a dimensionless constant calculated from an ana-
lytical function involving the parameter l (described later)
which also is dimensionless. The power law function for
y j 	 y 	 y i is

q
qsat

¼ yo

y

� �l

ð5Þ

the logarithmic function for yd 	 y 	 y j is

q
qsat

¼ a ln
yd

y

� �
: ð6Þ

The dependent parameters are calculated so as to ensure
continuity and smoothness at the junction points, y i and y j,
as follows:

a ¼ le
yo

yd

� �l

; ð7Þ

y i ¼ yo

2

2þ l

� ��1
l

; ð8Þ

Table 1. Study Areas and Number of Samples From Each

General Study Area State Number of Boreholes Number of Samples

Merced River Basin California 1 3
Panoche Creek California 1 2
Western Mojave Desert California 3 5
Northern High Plains Colorado, Nebraska 3 17
Idaho National Laboratory Idaho 10 46
Sugar Creek Basin Indiana 1 1
Morgan Creek Basin Maryland 3 3
Pomperaug River Basin Massachusetts 3 4
Powder River Basin Montana, Wyoming 5 6
Maple Creek Basin Nebraska 3 4
Amargosa Desert Research Site Nevada 2 2
Glassboro Study Area New Jersey 7 8
Middle Rio Grande Basin New Mexico 11 16
Trinity River Basin Texas 6 6
Sand Hollow Basin Utah 2 4
Granger Drain Basin Washington 3 3
Palouse Hills Washington 2 4
Western Lake Michigan Drainages Wisconsin 3 3
Total 69 137
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y j ¼ yde
�1
l ; ð9Þ

c ¼ 0:5l
2

2þ l

� �lþ2
l

: ð10Þ

A yd value of �1 � 107-cm water (the pressure at which q
goes to zero) was used in the model fits for all core samples.
That value is reasonable for a soil dried in an oven at 105�–
110�C with 50% relative humidity in the encironment
surrounding the oven [Ross et al., 1991; Rossi and Nimmo,
1994].
[12] A simple power law function was used to parameter-

ize the K(q) data in order to examine possible correlations
with bulk properties

K ¼ mqB: ð11Þ

Aneural network analysis was performed to further assess the
utility of the data for property transfer modeling. The neural
network, an alternative property transfer method to predict
soil properties, uses many interconnected computational
nodes with which a training process is used to develop
connection strengths (weights) relating input and output
variables. In essence, the neural network approximates
functions (linked together by weights), much like regression
analysis, but has been shown to give better results where there
are more than three variables [Pachepsky et al., 1996]. The
details of the analysis as implemented here and described by
Minasny and McBratney [2002a] and Minasny et al. [2004]
was performed using the Neuropack program [Minasny and
McBratney, 2002b]. The Neuropak program allows the user
to train and test a neural network using any data set and user-
chosen input parameters such as bulk density and sand, silt,
and clay percentages to predict the van Genuchten [1980]
water retention parameters a and n. The accuracy of the
predictions is measured using the root mean square of
the residuals (RMSR) in water content at each point on the
q(y)curve which represents the expected magnitude of the
error.

4. Data Precision and Accuracy

[13] Data precision presented here is based on the precision
of the measurement devices used. For example, bin limits for
particle size data were taken directly from the device output
or sieve size as given by the manufacturer. Precision of
quantities based on weight and volume, such as bulk density,
particle density, porosity and water content, were determined
by the precision of the balance, caliper, or volumetric flask
used.
[14] For unsaturated hydraulic property measurements it is

generally impractical and therefore not common practice to
replicate measurements. One reason is that no two field
samples are identical, and unsaturated hydraulic properties
are especially variable. Another is the cost which can be
several thousand dollars per sample for high-quality unsatu-
rated K measurements. Some measurements, such as bulk
density, require that the sample be oven dried, causing
irreversible alteration of properties. With laser particle size
analysis the sample is in suspension and irrecoverable
because of flushing of the system after each sample run.

Other samples can be run from the same split of one particular
core; however, the exact sample may not be run again. For
reasons such as these, accuracy is evaluated here on the basis
of known uncertainties of the individual measured data that
contribute to the result.
[15] Uncertainty in K(q) data measured using the SSC

method arises from mechanical error associated with control
of inflow rate and centrifugal driving force. According to
the manufacturers of the devices used, error in inflow rate is
±2.0 percent and error in rotational speed for the centrifuge is
±20 rpm. The calculated maximum error in K due to these
mechanical effects is 2%. Nimmo et al. [2002] discuss the
assumptions inherent to the method, the importance of
achieving and testing for steady state, and the possibility
for net force field deviations that could affect resulting K
calculations. Effects of compaction and y gradients on
measured K(q) have also been evaluated by Nimmo and
Akstin [1988] and Nimmo et al. [1994], respectively. The
combined error associated with the various issues investi-
gated is about ±10% [Nimmo et al., 2002].
[16] Uncertainties in y can occur as a result of error in

transducer calibration, laboratory temperature fluctuations,
and determination of equilibrium. On the basis of the trans-
ducer calibration data the error was on the order of 1 to 2 cm.
Laboratory temperature control was maintained at ±0.5�C for
all water retention measurements. Because these samples are
undisturbed, y was monitored at the top of the samples with
measures taken to prevent evaporation and equilibrium was
determined by observing the pressure time series until
deviations became small (on the order of a few cm). The
filter paper method was used in some cases to determine y in
the dry range; Campbell and Gee [1986] estimated errors in q
to be <10% at any given y value, on the basis of the scatter of
measured data points found in the literature.
[17] For water contents determined by weighing the sam-

ples, the accuracy of the scale, the oven-dry weight, and the
bulk volume affect their final values. Uncertainties in the
oven-dry weight are expected to be small; samples were
weighed more than once over a period of several days to
verify that the weight fluctuated by less than one tenth of a
gram. Bulk density measurements, upon which volumetric
water content calculations depend, are subject to uncertainty
arising from irregular surfaces, which were accounted for
by taking several measurements at various locations using
a depth micrometer, the average value of which affects the
length dimension for the volume of a cylinder. Errors in bulk
volume calculation were less than 1–2%.
[18] Errors in particle size distributions are more diffi-

cult to quantify. In addition to limitation in the accuracy of
weight, particle shape, orientation, sample size, and time of
shaking are factors known to cause errors in the determi-
nation of particle sizes by sieve analysis. Sieves generally
measure the intermediate axis of a particle while optical and
sedimentation methods for particle size are based on the
assumption that all particles have the same density and are
spherical in shape.

5. Results and Discussion

[19] Data sets for each of the 137 samples include rb, rp,
particle-size distribution, Ksat, K(q), and q(y). Some data are
missing for a few samples; 13 samples lack Ksat and 5 lack
q(y) measurements. All data, along with curve-fit parameters
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and particle size statistics (arithmetic and geometric mean,
median, geometric standard deviation, and the uniformity
coefficient (Cu = d60/d10)), are in the auxiliary material.
[20] Figure 2 shows examples of complete data sets for

four samples from Idaho, Nevada, Michigan, and Wyoming.

In several ways these four data sets illustrate why many sorts
of diversity are important in a database with any hope of
being representative of unsaturated zone materials in general.
The Wyoming sample is very dense and fine textured, as can
reasonably occur at its 19-m depth but is difficult to imagine
in a near-surface sample; its sensitivity of K to q is extremely
high, and its water content remains high over a large range of
y (an air entry value read off the retention curve would be
about �30 bars). Yet there is no geologic reason for such a
material not to occur or even to be prevalent in some deep
unsaturated zones. Such materials are likely underrepresented
in existing databases because of the difficulty of obtaining
such a sample and measuring its hydraulic properties. The
Michigan sample provides an interesting comparison in that
it similarly is compacted to high bulk density but has
coarser texture. Both K(q) and q(y) of Michigan are far
removed from those of Wyoming, suggesting an overriding
role of texture in determining the hydraulic properties of
these two samples. Curves for the Idaho and Nevada samples
fall mostly between those for Wyoming and Michigan with
relative positions corresponding to the coarseness of their
texture. The effect of bulk density is most apparent in the
wet portion of the retention curves, with the obvious effect
of directing the near-saturated water contents to the porosity
of the medium. Collectively these results suggest that
property transfer models based on texture and porosity
might be particularly effective for samples from depths of
at least 4.3 m.
[21] The data were analyzed for correlations between

hydraulic and bulk properties that may be useful in property
transfer modeling. The variables examined for correlations
include sample depth, rb, particle size statistics (geometric
mean, median, geometric standard deviation, and Cu), Ksat,
parameterized K(q), and parameterized y(q). Because all of
these variables, except for sample depth and rb, span several
orders of magnitude, logarithmic transformations were used.
[22] The SSC method used for measuring K(q) normally

allows the operator to determine the K values a priori for
which the corresponding q values are measured. Many of the
samples had measured points at precisely the same K values
which facilitated additional correlations. In particular, three
values of K were common among many of the follow-
ing samples: 1 � 10�6 cm/s (61 samples), 3 � 10�8 cm/s
(79 samples), and 5� 10�9 (76 samples). The water contents
(in terms of percent saturation) at those particular K values
were examined for correlations with bulk properties.
[23] Many of the bulk properties, including sample depth,

rb, geometric particle size standard deviation, and Cu, were
uncorrelated (as indicated by low R2 values) with any of the
hydraulic properties (Table 2). There were some variables
withmoderate correlations with the geometricmean or median
particle diameter including the RNJ model yo parameter
(Figure 3a) and percent saturation at all three of the common
K values (Figure 3b). Additionally, there was a moderate
correlation between the K(q) a parameter and RNJ model l
parameter (R2 = 0.474, Figure 4a) and between the K(q)
parameters a and m (R2 = 0.680, Figure 4b). Because y(q)
is much easier to measure then K(q), it would be useful if l
could be used to predict K(q). The a parameter was better
predicted (R2 = 0.474) by the simple relationship than the m
parameter (R2 = 0.274) (Figure 5). Thus these results are

Figure 2. Example data sets for samples from Idaho,
Nevada, Michigan, and Wyoming including (a) unsaturated
hydraulic conductivity, bulk density, and particle density;
(b) water retention and the Rossi and Nimmo [1994] junction
model parameters yo and l; and (c) particle size distribution
and geometric mean and uniformity coefficient.
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Figure 3. Correlations (a) between the Rossi-Nimmo
junction model parameter yo and geometric mean particle
diameter and (b) between percent saturation at three
common K values and geometric mean particle diameter.

Figure 4. Correlations (a) between the K(q) fit parameter a
and the Rossi-Nimmo junction model parameter l and
(b) between K(q) fit parameters a and m.
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encouraging for the possibility of generalizing a link
between a q(y) and a K(q) parameter, but not as much
for the possibility of a single-parameter K(q) relation.
[24] The neural network analysis was performed using

several combinations of training and testing data sets, includ-
ing the data presented here (referred to as the UZF data set)

and two separate data sets chosen from the UNSODA data-
base (Nemes et al., data set, 1999). The four training data sets
were used: 100 samples from the UZF data set, 90 samples
fromUNSODA set 1, a combination of 50 samples fromUZF
data and 50 from UNSODA set 1, and 50 from UNSODA

Figure 5. Correlations (a) between the fit and predicted
K(q) parameter a and (b) between the fit and predicted K(q)
parameter m.

Table 2. Correlations Between Hydraulic and Bulk Physical Properties With Transformation of Selected Variables in Terms of R2 Values

Sample
Depth

Bulk
Density

log (Geometric Mean
Particle Diameter)

log (Geometric Particle-Size
Standard Deviation)

log (Median
Particle Diameter)

log
(Uniformity Coefficient)

log (Ksat) 0.024 0.001 0.336 0.001 0.324 0.008
log (yo) 0.133 0.115 0.495 0.130 0.531 0.056
log (l) 0.011 0.000 0.069 0.103 0.049 0.220
log (a) 0.072 0.016 0.396 0.008 0.368 0.046
Percent saturation at K = 1E-6 0.016 0.014 0.473 0.156 0.193 0.294
Percent saturation at K = 3E-8 0.035 0.004 0.572 0.024 0.533 0.152
Percent saturation at K = 5E-9 0.063 0.000 0.575 0.011 0.497 0.083

Figure 6. Neural network (a) training and (b) testing data
for the UZF data set.
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set 2 (Table 3). The error associated with the training process
was similar for all four data sets, 2–4%. As expected, model
testing produces higher error for all data sets, 5–16%. The
training and testing results for the UZF data set (Figure 6)
produce relatively low RMSR values. The highest error
occurs when the UZF data set is used to test the UNSODA-
trained neural network, likely due to the underrepresentation
of deep unsaturated zone samples in the UNSODA data set.
Training and testing the neural network with subsets of the
UZF data reduces the error considerably, from 10% to 5%.

6. Conclusions

[25] High-quality unsaturated zone hydraulic property
data, including unsaturated hydraulic conductivity, are desir-
able for use in many types of hydrologic studies including
aquifer recharge estimation, habitat evaluation, determina-
tion of rainfall-runoff relations, and theoretical and property
transfer model development and testing. The core sample
data set presented here, which represents diverse geographic,
climatic, and geomorphic environments, includes saturated
and unsaturated hydraulic conductivity, water retention,
particle-size distributions, and other bulk properties. All of
the core samples are minimally disturbed and the measure-
ment techniques employed are state of the art. Simple linear
correlations and neural network analysis suggest relation-
ships between bulk and hydraulic properties useful in prop-
erty transfer model development.
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